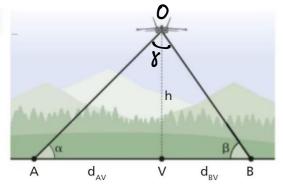
Il terrazzo Nell'appartamento di Barbara c'è un terrazzo della forma rappresentata in figura. La lunghezza đei due lati è AB = 9 m e BC = 7 m e il lato AB forma un angolo di 30° con la parete esterna AC.

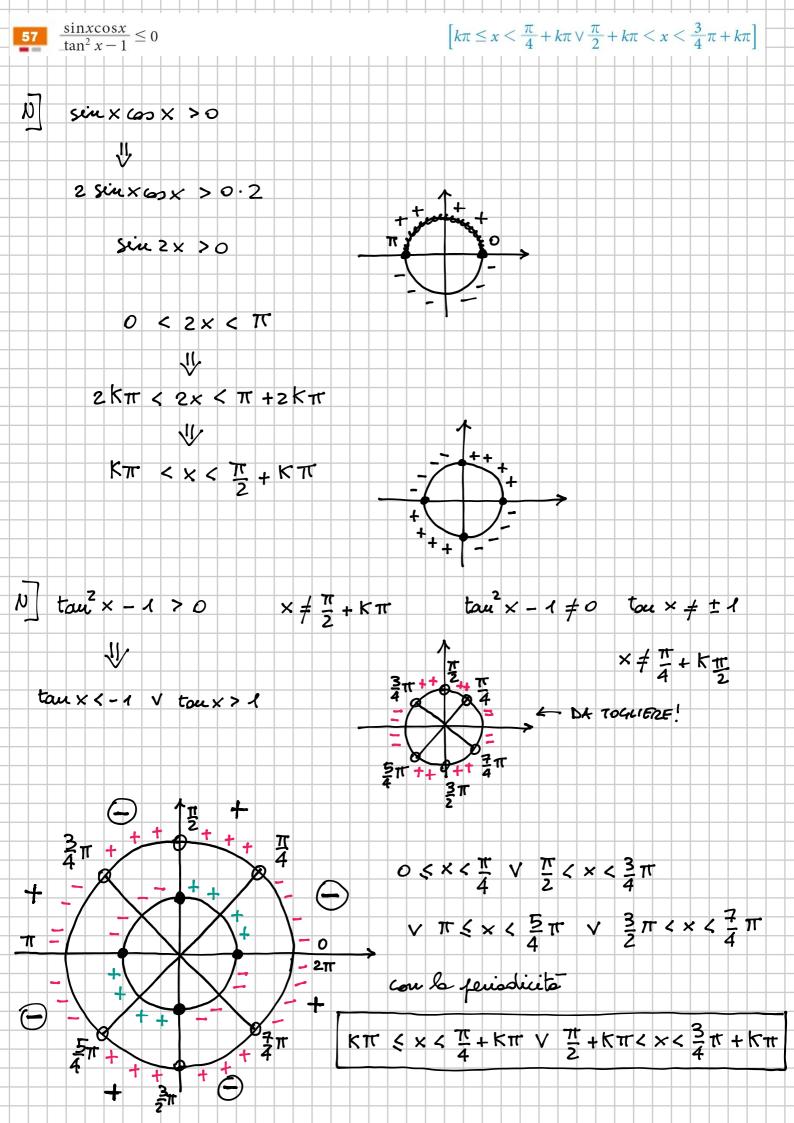
- **a.** Qual è l'ampiezza dell'angolo che il lato BC forma con la parete AC? E di quello formato tra i due lati esterni?
- **b.** Qual è la superficie del terrazzo?
- c. Se si volesse che il terrazzo fosse di soli 20 m², quanto misurerebbe l'angolo formato dai due lati esterni? (Le misure di AB e di BC rimangono uguali e il triangolo rimane ottusangolo.)

a			[a) circa 40°, circa 110°; b) circa 30 m²; c) circa 141°]
TH. SENI	$\overline{AB} = BC$	Sin X -	AB six 30° = 9 1 - 9
	gin 8 sin 30	• • • • •	$\frac{AB}{BC}$ sin 30° = $\frac{9}{7}$. $\frac{1}{2}$ = $\frac{9}{14}$
		Y = accrir	$u\left(\frac{9}{14}\right) \forall \% = 180^{\circ} - \alpha csin\left(\frac{9}{14}\right)$
		≈ 40°	2 140°
			you Acc.
/ 3 :	× 180° - 40° - 30°	2 = 110	faction of occurs
l-) u	4 = 1 AB · BC ·	sine B = 1 (9 m	u)·(7m). Siv 110° = 29 6 m²
		~ 30 m²	


$$40 = 9.7. \sin \beta = > \sin \beta = \frac{40}{63}$$

NOV ACC.

$$\beta = \arcsin\left(\frac{40}{63}\right) \vee \beta = 180^{\circ} - \arcsin\left(\frac{40}{63}\right)$$


$$= 39,41...^{\circ} = 140,58...^{\circ}$$

$$\approx 39^{\circ} \approx 141^{\circ}$$

MOTO NEL PIANO Mentre viaggia parallelamente al suolo con $\nu_0=210$ m/s, un jet accende un motore ausiliario e la sua velocità aumenta. Nell'istante in cui il velivolo supera la velocità del suono, viene emesso il caratteristico *boom*. Due rilevatori acustici posti a terra nelle posizioni A e B, illustrate in figura, rispetto alla traiettoria dell'aereo, e distanti L=12 km l'uno dall'altro, rilevano la fonte del *boom* a un'inclinazione rispettivamente di $\alpha=45^\circ$ e $\beta=55^\circ$ rispetto all'orizzonte.

- **a.** Calcola la quota h a cui si trova il velivolo.
- **b.** Calcola il ritardo con cui il rilevatore *A* riceve il *boom* rispetto al rilevatore *B*. (**suggerimento** Il suono viaggia in linea retta con $v_s = 330 \text{ m/s.}$) [a) 7.1 km; b) 4.5 s]

